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Abstract—Software Defined Radio (SDR) has gained a great 
deal of attentions in both civil and military applications. As the 
most important SDR standard, Software Communications 
Architecture (SCA) has been accepted and extensively adopted in 
the development of radio systems since it was first released. A 
new standard, Space Telecommunications Radio System (STRS), 
was developed by National Aeronautics and Space 
Administration (NASA) to align with the mission requirements 
due to the drawbacks of SCA 2.2.2. In this paper, we explore 
whether SCA 4.1, the latest release version of SCA, can meet the 
requirements of space application by making a comparison 
between SCA 4.1 and STRS in static memory occupation, inter-
components communication delay, waveform deployment delay 
and waveform switching delay. We have tested our realizations of 
full SCA 4.1, lightweight SCA 4.1 and STRS in our testbed 
extensively, where full SCA 4.1 is considered as a benchmark. 
The experiment results show that although lightweight SCA 4.1 
has relative larger demand on static memory occupation, longer 
waveform loading and switching delay, its inter-components 
communication could be as efficient as STRS. 
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I. INTRODUCTION  

The concept of Software Defined Radio (SDR) is adopted 
in implementing communication systems in the space 
environment with three main goals, reducing the development 
cycle-time, reducing the development cost, and increasing the 
communication flexibility among space radios and ground 
stations. However, implementing SDR in space environment 
comes with some challenges that need special concerns. Firstly, 
the space communication system is a strict size, weight and 
power (SWaP) constrained system, which limits its total 
capability. Secondly, the chips for space use is developing 
much slower than chips for commercial use. For example, the 
central processing unit (CPU) and memory chips for space use 
are quite expensive and have much lower clock speeds, smaller 
cache and memory size due to the strict reliability requirements 
in the space environment. Finally, there are urgent demands for 
the reuse of both the platform and software. The platform reuse 
allows different applications to be deployed on the same 
platform, enabling the innovation of the system. The software 
reuse reduces the cycle-time of reprogramming and speeds up 
the date-to-market [1][2]. 

Software has been contributed to the development of 
communication systems for decades, which brings a lot of 
advantages compared with hardware-based or firmware-based 
system development. Among the advantages, modularity, 
lower development costs and shorter development time are the 

best benefits and highlights. Based on the software-based 
development paradigm used in SDR-based system, some 
hardware problems could be turned into software problems [3]. 

Quite a few SDR standards have been proposed since the 
concept of SDR was coined, e.g., Software Communications 
Architecture (SCA) [4], GNU Radio [5], Abstraction Layer and 
Operating Environment (ALOE) [6] and Space 
Telecommunications Radio System (STRS) [7] etc. SCA is the 
most widely adopted standard in SDR area and has been 
deployed in thousands of radios worldwide [8], while STRS is 
dedicated for space SDR development and has been deployed 
on the space communications and  navigation (SCAN) testbed 
of NASA [9].This paper is designed to verify if appropriate 
realization of the latest version of SCA can catch up with the 
efficiency indexes of STRS[11]. Thus, we first give a brief 
introduction of highlights of SCA 2.2.2, STRS and SCA 4.1 in 
a chronological sequence. 

A. SCA 2.2.2 

The final specification of SCA 2.2.2 was proposed in May, 
2006. It describes the core framework which provides the 
infrastructure to allow software components to plug-and-play 
and also describes set of rules and application program 
interfaces (APIs) that must be used by developers of SCA-
compliant software components. Fig. 1 presents the SCA 
software execution model. As depicted in the figure, the 
hardware is separated from the software through the hardware 
abstraction layer (HAL), making the operation environment 
(OE) independent of the hardware. 
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Fig. 1. SCA 2.2.2 software execution model [11]. 

Due to the stringent portability and interoperability 
requirements, SCA radios generally contain much more 
software than previous generations of SDRs. To be more 
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specific, SCA radios use some software modules to process the 
input and output signals. Most SCA radios contain several 
millions lines of source code. As a result, SCA radios generally 
take longer time to boot, use more memory and has lower 
communication speed [8]. 

In order to support the ability of multi-platform 
communication, common object request broker architecture 
(CORBA) standard is adopted. It brings great benefits to 
support portability and interoperability. However, its high 
demands on memory consumption and CPU occupation make 
it an obstacle of adopting SCA in space applications. 

B. STRS 

The most recent specification of STRS, NASA-STD-4009, 
was approved in May, 2014. In order to benefit from the SDR 
technology in space applications, NASA proposed STRS at a 
historic moment [12]. Fig. 2 presents the STRS software 
execution model. As can be seen from the figure, the waveform 
applications and high level services are abstracted from the 
hardware by a common, consistent operating environment 
which includes a set of published APIs, including POSIX APIs, 
STRS APIs and HAL APIs [12]. 
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Fig. 2. STRS software execution model [12]. 

STRS is designed to be able to evolve for each generation 
of space communication. The standard provides many 
flexibility to meet a variety of requirements of users and make 
it possible to reuse components in previous versions, which 
reduces the cost and the risk of deploying SDRs for space 
missions.  

C. SCA 4.1 

The Joint Program Executive Office (JPEO) for the Joint 
Tactical Radio System (JTRS) put forward SCA 4.0 in 2009. 
With multiple recommendations incorporated, it is replaced by 
the latest version, SCA 4.1, which was announced in August, 
2015. Thanks to the great contributions from JTRS, JTNC, 
WInn Wireless and many other companies, the SCA keeps 
advancing, making it potentially applicable to resource-limited 
scenarios.  
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Fig. 3. SCA 4.1 software execution model [4]. 

The highlights of evolution from SCA 4.1 to  SCA 2.2.2 
can be summarized as follows.  

Adopt “push model” behavior. The “push model” 
behavior reduces the total number of calls, which lowers the 
overall complexity and enhances the system efficiency. 

Remove dependence on CORBA. SCA 4.1 has removed 
the CORBA requirements and replace it by a reconfigurable 
transfer mechanism with common APIs, so that the architecture 
can gain more flexibility and efficiency. 

Add static registration behavior. SCA 4.1 provides both 
static registration and dynamic registration. The introduce of 
static registration can enhance the system performance and 
reduce overhead.  

Provide Units of Functionality (UOF) and SCA Profiles. 
UOFs are able to omit unnecessary interfaces and modules, so 
that the object size can be reduced and the system performance 
can be improved.  

Overall, SCA 4.1 has introduced many lightweight designs 
which enhance the flexibility and efficiency of the architecture. 
With these new features, it is supposed that SCA 4.1 has the 
potential to be deployed on space SDRs. Therefore, whether 
STRS is the only option to be deployed on the radio device in 
space environment and whether SCA 4.1 can be utilized in 
space environment still need to be explored.  

To make these doubts clear, this paper makes a comparison 
between SCA 4.1 and STRS by different metrics, including 
static memory occupation, inter-components communication 
delay, waveform deployment delay and waveform switching 
delay. 

The reminder of this paper is organized as follows. Section 
II presents our core framework designs for SCA 4.1 and STRS. 
Section III introduces our testbed implementation. Section IV 
presents the experiment results and section V concludes the 
paper. 

II. CORE FRAMEWORK DESIGN 

Fig. 4 and Fig. 5 illustrate the layered framework that we 
designed according to the standard of  SCA 4.1 and STRS. In 
STRS, core framework is also known as STRS infrastructure. 
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Fig. 4. SCA 4.1 layered framework. 
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Fig. 5. STRS layered framework. 

As can be seen from Fig. 4 and Fig. 5, STRS does not 
include the Domain Configuration Manager, File System 
Management and ORB encapsulation module. It is obvious that 
STRS has much less requirements than SCA, so that STRS 
owns a more lightweight core framework structure. 

Fig. 6 and Fig. 7 presents the core framework interfaces of 
SCA 4.1 and STRS respectively. STRS core framework is 
written in C language and does not have the complex inheriting 

relationship as SCA, but only has some common infrastructure 
interfaces, which simplifies the realization of the core 
framework. 

 
Fig. 6. SCA 4.1 core framework interfaces. 

 

Fig. 7. STRS core framework interfaces. 

The purpose of this paper is to compare the efficiency of 
SCA 4.1 and STRS. The comparison is carried out with respect 
to full SCA 4.1, lightweight SCA 4.1 and STRS. Lightweight 
SCA 4.1 is a profile with the lightest selection of interfaces, 
modules, which is considered as a potential replacement of 
STRS. Full SCA 4.1 is an realization with full CORBA Profile 
transfer mechanism and we consider it as a benchmark in our 
experiments [4][12]. 

Full SCA 4.1 still adopt the concept of agency, making 
users easier to access services provided by the component in 
the system. The agency mechanism is depicted in Fig. 8. The 
Remote Method Invocation (RMI) system establishes three 
abstract layers, which contain socket communication, the 
serialization and deserialization of variables and results, etc. 
The stub and skeleton combine to form the RMI frame protocol. 
The remote reference layer is adopted to find the 
communication object. The transport layer provides the 
interconnection of client and server based on the TCP/IP 
protocol.  
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Fig. 8. Agency mechanism. 

On the contrary, lightweight SCA 4.1 and STRS do not 
utilize the mechanism of agency, and launch all GPP 
components in a process address space. In this way, we could 
gain higher efficiency without the burden of serialization, 
deserialization and various protocols, etc. 

III. TESTBED INPLEMENTATION 

The experiments are carried out on our own testbed, which 
is shown in Fig. 9. The hardware ZLSDR-1000 is a high 
performance general SDR platform, which is designed for 
rapid prototype of waveforms. The main chip inside is ZYNQ 
7030 which includes a dual-core of ARM Cortex-A9 (clock 
speed 667MHz) and a FPGA of Kintex-7 (logic cells 125K, 
DSP Slices 400). The DDR memory size is 1GB. This platform 
contains the Linux 3.17 operating system, which is convenient 
for users to develop applications in a Ubuntu system. All 
experiments are carried out on this testbed. 

 

Fig. 9. General SDR platform (ZLSDR-1000). 

There are several aspects that may affect the performance, 
e.g., packet size, total amount of packets and number of 
components, etc. Four metrics are adopted to investigate the 
performance between STRS, lightweight SCA 4.1 and full 
SCA 4.1, namely, static memory occupation, inter-components 
communication delay, waveform deployment delay and 
waveform switching delay. The delay is captured by adding 
timestamps at the input or output port of a component and the 
inter-components communication delay is presented in Fig. 10. 
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Fig. 10. Inter-components communication delay. 

As shown in Fig. 10, the timestamp T1 is recorded before 
the source component sends a packet and the timestamp T2 is 
recorded after the middle component receives a packet. The 
inter-components communication time of a single link (T) can 
be computed as [T=(T2-T1)]. The experiments only record two 
timestamps (T1 and TN). The timestamp TN is recorded after 
the sink component receives the last packet. The difference of 
TN and T1 (TN-T1) approximately represents the amount time 
of all links in inter-components communication with the 
component processing time has been curtailed extremely to 
approach zero. 

The waveform deployment delay and waveform switching 
delay are displayed in Fig. 11. As can be seen from Fig. 11, the 
waveform deployment delay is comprised of the delays of 
uploading and initializing the waveform, and the waveform 
switching delay includes of delays of waveform stop to 
waveform launch. 
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Fig. 11. Waveform deployment delay and waveform switching delay. 

The efficiency of inter-components communication is a 
critical element for evaluating a SDR system and is influenced 
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by several aspects, including packet size, total amount of 
packets and number of components. The number of links of 
inter-components, which also affects the delay, is not 
considered as a metric as our test waveform is a cascaded flow 
waveform with no processing codes in each middle 
components [13]. 

IV. EXPERIMENT RESULTS AND ANALYSIS 

To compare the performance between Lightweight SCA 4.1 
and STRS, we carry out extensive experiment and discuss the 
results in this section. The results of full SCA 4.1 are presented 
as benchmarks. The experiment parameters are listed in Table I. 

TABLE I.  EXPERIMENT PARAMETERS 

Parameter  Value 

Packet size (bytes)  128, 256, 512, 1024, 2048, 4096 

Amount of packets (×106)  1, 2, …, 10 

Number of components  3, 4, …, 11 

 

In the experiment, continuous packets are pushed from the 
source component to the sink component. The purpose is not 
only to evaluate the delay performance but also to conduct 
pressure test. The test is to evaluate the long-term performance 
of the system with different core frameworks and transfer 
mechanisms. 

A. Experiment Results 

Table II shows the static memory occupation of STRS, 
lightweight SCA 4.1 and full SCA 4.1. As shown in Table II, 
the memory occupation of STRS is much smaller than that of 
lightweight SCA 4.1 and full SCA 4.1, which is more suitable 
for memory limited radio systems. 

TABLE II.  STATIC MEMORY OCCUPATION COMPARISON 

Implementation 
Static memory occupation 

(MB) 

STRS 4.77 

Lightweight SCA 4.1 27.82 

Full SCA 4.1 77.20 

 

Table III illustrates the communication delay of each link  
between components in microsecond with different packet 
sizes. The number of component is 11. As shown in the table, 
the communication delay of STRS remains almost the same for 
different packet sizes. The communication delay of lightweight 
SCA increases with the packet size when it is small, and finally 
tends to saturate when the package size raises to 2048 bytes. 
The communication delay of full SCA 4.1 keeps increasing 
with the packet size. The delay of STRS and lightweight SCA 
is close, while that of full SCA 4.1 is over ten times larger than 
the other two frameworks. It should be noted that, in the 
experiment one packet is passed through 10 links from the 
transmitter to the receiver since the component number equals 
to 11. 

TABLE III.  INTER-COMPONENTS COMMUNICATION DELAY COMPARISON 
WITH DIFFERENT PACKET SIZES 

Package 
size (bytes)

STRS (us) 
Lightweight 

SCA (us) 
Full SCA 4.1 

(us) 

128 17.30 17.20 189.00 

256 17.30 18.40 189.00 

512 17.30 19.00 196.00 

1024 17.30 20.80 200.00 

2048 17.30 21.00 216.00 

4096 17.50 21.00 240.00 

 

Table IV presents the total time consumption with different 
amount of packets. As shown in the table, that of STRS, 
lightweight SCA and full SCA 4.1 all increase linearly with the 
amount of data package in almost the same rate.  

TABLE IV.  TOTAL TIME COMSUPTION COMPARISON WITH DIFFERENT 
AMOUNT OF PACKETS 

Amount of 
packets 

STRS (s) 
Lightweight 
SCA 4.1 (s) 

Full SCA 4.1 
(s) 

100,000 17.50 21.00 240.00 

200,000 40.10 42.20 476.00 

300,000 66.70 63.60 715.00 

400,000 81.60 85.00 946.00 

500,000 101.90 105.40 1190.00 

600,000 119.20 125.40 1441.00 

700,000 143.10 147.80 1669.00 

800,000 164.90 162.20 1905.00 

900,000 184.10 191.00 2142.00 

1,000,000 201.70 207.40 2399.00 

 
Table V shows the communication delay of each link  

between components  in microsecond. As shown in the table, 
that of STRS, lightweight SCA and full SCA 4.1 increase with 
the components number. 

TABLE V.  INTER-COMPONENTS COMMUNICATION TIME COMPARISON IN 
THE COMPONENT NUMBER 

Number of 
components  

STRS (us) 
Lightweight 
SCA 4.1 (us) 

Full SCA 4.1 
(us) 

3 15.50 23.00 175.00 

4 16.00 19.67 186.67 

5 16.75 20.50 197.50 

6 16.00 19.80 208.00 

7 16.50 21.33 211.67 

8 16.43 20.14 218.57 

9 17.00 20.75 227.50 

10 17.22 20.22 233.33 

11 17.50 21.00 240.00 

 

Table VI shows the waveform deployment delay of each 
SDR architecture in millisecond. As shown in the table, the 
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deployment delay increases with the component number for all 
of the three SDR architecture used in the experiment. 

TABLE VI.  WAVEFORM DEPLOYMENT DELAY COMPARISON IN THE 
COMPONENT NUMBER 

Number of 
components 

STRS (ms) 
Lightweight SCA 

4.1 (ms) 
Full SCA 4.1 

(ms) 

3 12 46.7 843.3 

4 13.3 51 1078 

5 14.7 55 1318 

6 16 58.7 1588 

7 17.7 62 1841.8 

8 18.7 65.3 2130 

9 20 69.7 2385 

10 20.5 73 2641.6 

11 21 79.6 2903.7 

 

Table VII shows the waveform switching delay of each 
standard in millisecond. Through the observation, the 
deployment delay increases with the increasing of the amount 
of components for all of the three standards. 

TABLE VII.  WAVEFORM SWITCHING DELAY COMPARISON IN THE 
COMPONENT NUMBER 

Number of 
components 

STRS (ms) 
Lightweight 
SCA 4.1 (ms) 

Full SCA 4.1 
(ms) 

3 13 51.6 880.6 

4 14.6 56 1124 

5 15.7 60 1376.3 

6 17.7 64.4 1661.6 

7 19.4 67.7 1930.4 

8 20.4 71.3 2234 

9 21.6 76.7 2502 

10 22.2 79 2769.6 

11 23 85.9 3035.1 

B. Analysis 

According to the experiment results, lightweight SCA 4.1 
and STRS have very close transfer efficiency. Their transfer 
delay is almost 1/10 of full SCA 4.1.  

As shown in Fig. 12, each component in full SCA 4.1 
creates a new process and keeps “alive” by circling the 
accepting code inside. Components accept and send packet 
once available from middleware, as shown in Fig. 11. While 
Components in STRS and lightweight SCA 4.1 fetch and push 
packets by transfer mechanism. The creation and 
communication between processes devote to the lower 
efficiency in full SCA 4.1.  

Comp 1 Comp 2 Comp 10 Comp 11

Transfer Mechanism

Send

Accepting

Send Send

Packets
Generating AcceptingAccepting

 

Fig. 12. Circling mission of SCA component 

Another difference for full SCA 4.1 is the adoption of 
object request broker (ORB) mode, which brings more 
manipulations such as serialization and deserialization, which 
involuntary cause the decrease of efficiency.  

The standards of STRS and SCA both have their 
advantages and disadvantages. The merits of STRS are its high 
efficiency and the fact that it can operate on the lightweight 
platform which is resource-limited. In the earlier versions of 
VxWorks, e.g., 5.4 and 5.5, that use the sharing address space 
for all tasks, the efficiency of the inter-task communication is 
quite high. STRS also has disadvantages in term of portability 
and interoperability. The portability and interoperability of 
STRS is lower than other SDR architectures, making it  less 
attractive in implementing ground-based communication 
systems. Meanwhile, the implementation of STRS does not 
provide the agency mechanism, placing more difficulty for the 
application developer. The merits of the SCA are increasing 
flexibility by adopting self-defined lightweight middleware and 
reducing the expenditure with thread communication. The 
drawbacks of the SCA are high waveform deployment delay, 
high waveform switching delay and large static memory 
occupation. 

V. CONCLUSIONS 

This paper evaluate the performance of three SDR 
implementation, i.e., STRS, lightweight SCA and full SCA 4.1 
with four typical metrics. The experiment results demonstrate 
that the lightweight SCA 4.1 and STRS have similar 
performance on inter-components transfer efficiency. The 
experiment results also show that the efficiency of full SCA 4.1 
CORBA is much lower than the other two SDR architectures in 
all aspects. According to the experiment results, it is worth 
considering adopting lightweight SCA 4.1 in the space 
platform owing to its high efficiency. However, when use this 
architecture, one should pay special attention to the waveform 
deployment, switching delay and static memory occupation. 
Possible future work include carrying out experiments in 
platform with limited computing capability and memory size. 
Besides, the experiments can also be extended to evaluate the 
power consumption of different architectures, which is also a 
challenge  in space environment. 
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