
1

Can SCA 4.1 Replace STRS in Space Applications?

Ran Cheng1, Li Zhou1*, Qi Tang1, Dongtang Ma1, Haitao Zhao1, Shan Wang1, Jibo Wei1
1College of Electronic Science and Engineering, National University of Defense Technology, China

*Email: zhouli2035@nudt.edu.cn

Abstract—Software Defined Radio (SDR) has gained a great
deal of attentions in both civil and military applications. As the
most important SDR standard, Software Communications
Architecture (SCA) has been accepted and extensively adopted in
the development of radio systems since it was first released. A
new standard, Space Telecommunications Radio System (STRS),
was developed by National Aeronautics and Space
Administration (NASA) to align with the mission requirements
due to the drawbacks of SCA 2.2.2. In this paper, we explore
whether SCA 4.1, the latest release version of SCA, can meet the
requirements of space application by making a comparison
between SCA 4.1 and STRS in static memory occupation, inter-
components communication delay, waveform deployment delay
and waveform switching delay. We have tested our realizations of
full SCA 4.1, lightweight SCA 4.1 and STRS in our testbed
extensively, where full SCA 4.1 is considered as a benchmark.
The experiment results show that although lightweight SCA 4.1
has relative larger demand on static memory occupation, longer
waveform loading and switching delay, its inter-components
communication could be as efficient as STRS.

Keywords—Software Defined Radio, Software Communications
Architecture, Space Telecommunications Radio System, efficiency

I. INTRODUCTION

The concept of Software Defined Radio (SDR) is adopted
in implementing communication systems in the space
environment with three main goals, reducing the development
cycle-time, reducing the development cost, and increasing the
communication flexibility among space radios and ground
stations. However, implementing SDR in space environment
comes with some challenges that need special concerns. Firstly,
the space communication system is a strict size, weight and
power (SWaP) constrained system, which limits its total
capability. Secondly, the chips for space use is developing
much slower than chips for commercial use. For example, the
central processing unit (CPU) and memory chips for space use
are quite expensive and have much lower clock speeds, smaller
cache and memory size due to the strict reliability requirements
in the space environment. Finally, there are urgent demands for
the reuse of both the platform and software. The platform reuse
allows different applications to be deployed on the same
platform, enabling the innovation of the system. The software
reuse reduces the cycle-time of reprogramming and speeds up
the date-to-market [1][2].

Software has been contributed to the development of
communication systems for decades, which brings a lot of
advantages compared with hardware-based or firmware-based
system development. Among the advantages, modularity,
lower development costs and shorter development time are the

best benefits and highlights. Based on the software-based
development paradigm used in SDR-based system, some
hardware problems could be turned into software problems [3].

Quite a few SDR standards have been proposed since the
concept of SDR was coined, e.g., Software Communications
Architecture (SCA) [4], GNU Radio [5], Abstraction Layer and
Operating Environment (ALOE) [6] and Space
Telecommunications Radio System (STRS) [7] etc. SCA is the
most widely adopted standard in SDR area and has been
deployed in thousands of radios worldwide [8], while STRS is
dedicated for space SDR development and has been deployed
on the space communications and navigation (SCAN) testbed
of NASA [9].This paper is designed to verify if appropriate
realization of the latest version of SCA can catch up with the
efficiency indexes of STRS[11]. Thus, we first give a brief
introduction of highlights of SCA 2.2.2, STRS and SCA 4.1 in
a chronological sequence.

A. SCA 2.2.2

The final specification of SCA 2.2.2 was proposed in May,
2006. It describes the core framework which provides the
infrastructure to allow software components to plug-and-play
and also describes set of rules and application program
interfaces (APIs) that must be used by developers of SCA-
compliant software components. Fig. 1 presents the SCA
software execution model. As depicted in the figure, the
hardware is separated from the software through the hardware
abstraction layer (HAL), making the operation environment
(OE) independent of the hardware.

Core Framework
(CF)

CORBA

AEP

HAL API

GPM

BSP

Specialized HW

Drivers

CORBA APIs CF APIs

Waveform Applications and High Level Services

Fig. 1. SCA 2.2.2 software execution model [11].

Due to the stringent portability and interoperability
requirements, SCA radios generally contain much more
software than previous generations of SDRs. To be more

2

specific, SCA radios use some software modules to process the
input and output signals. Most SCA radios contain several
millions lines of source code. As a result, SCA radios generally
take longer time to boot, use more memory and has lower
communication speed [8].

In order to support the ability of multi-platform
communication, common object request broker architecture
(CORBA) standard is adopted. It brings great benefits to
support portability and interoperability. However, its high
demands on memory consumption and CPU occupation make
it an obstacle of adopting SCA in space applications.

B. STRS

The most recent specification of STRS, NASA-STD-4009,
was approved in May, 2014. In order to benefit from the SDR
technology in space applications, NASA proposed STRS at a
historic moment [12]. Fig. 2 presents the STRS software
execution model. As can be seen from the figure, the waveform
applications and high level services are abstracted from the
hardware by a common, consistent operating environment
which includes a set of published APIs, including POSIX APIs,
STRS APIs and HAL APIs [12].

STRS Infrastructure
Transfer

Mechanism and
ServicesAEP

HAL API

GPM

BSP

Specialized HW

Drivers

POSIX APIs STRS APIs

Waveform Applications and High Level Services

Fig. 2. STRS software execution model [12].

STRS is designed to be able to evolve for each generation
of space communication. The standard provides many
flexibility to meet a variety of requirements of users and make
it possible to reuse components in previous versions, which
reduces the cost and the risk of deploying SDRs for space
missions.

C. SCA 4.1

The Joint Program Executive Office (JPEO) for the Joint
Tactical Radio System (JTRS) put forward SCA 4.0 in 2009.
With multiple recommendations incorporated, it is replaced by
the latest version, SCA 4.1, which was announced in August,
2015. Thanks to the great contributions from JTRS, JTNC,
WInn Wireless and many other companies, the SCA keeps
advancing, making it potentially applicable to resource-limited
scenarios.

CF
Transfer

Mechanism and
ServicesAEP

HAL API

GPM

BSP

Specialized HW

Drivers

POSIX APIs CF APIs

Waveform Applications and High Level Services

Fig. 3. SCA 4.1 software execution model [4].

The highlights of evolution from SCA 4.1 to SCA 2.2.2
can be summarized as follows.

Adopt “push model” behavior. The “push model”
behavior reduces the total number of calls, which lowers the
overall complexity and enhances the system efficiency.

Remove dependence on CORBA. SCA 4.1 has removed
the CORBA requirements and replace it by a reconfigurable
transfer mechanism with common APIs, so that the architecture
can gain more flexibility and efficiency.

Add static registration behavior. SCA 4.1 provides both
static registration and dynamic registration. The introduce of
static registration can enhance the system performance and
reduce overhead.

Provide Units of Functionality (UOF) and SCA Profiles.
UOFs are able to omit unnecessary interfaces and modules, so
that the object size can be reduced and the system performance
can be improved.

Overall, SCA 4.1 has introduced many lightweight designs
which enhance the flexibility and efficiency of the architecture.
With these new features, it is supposed that SCA 4.1 has the
potential to be deployed on space SDRs. Therefore, whether
STRS is the only option to be deployed on the radio device in
space environment and whether SCA 4.1 can be utilized in
space environment still need to be explored.

To make these doubts clear, this paper makes a comparison
between SCA 4.1 and STRS by different metrics, including
static memory occupation, inter-components communication
delay, waveform deployment delay and waveform switching
delay.

The reminder of this paper is organized as follows. Section
II presents our core framework designs for SCA 4.1 and STRS.
Section III introduces our testbed implementation. Section IV
presents the experiment results and section V concludes the
paper.

II. CORE FRAMEWORK DESIGN

Fig. 4 and Fig. 5 illustrate the layered framework that we
designed according to the standard of SCA 4.1 and STRS. In
STRS, core framework is also known as STRS infrastructure.

3

Core Module

Basic Module

Domain Manager Device Service
Manager

File Manager

Component
Deployment
Management

Module

File Operation
/Management

Domain
Configuration

Manager

File System
Operation

/Management

File Manager
Operation

Waveform Control
Manager

Waveform
Application Manager

Waveform
Install/Delete

Device Login/Logout

Device Management
Control

Service Login/Logout

File System
Management

Waveform
Reconsitution

Module

Domain
Description

Parser Module

Component
Connection
Management

module

Resource
Management

Module

ORB
Encapsulation

Module

Waveform
Development
Public Library

Fig. 4. SCA 4.1 layered framework.

Core Module

Basic Module

Domain Manager Device Service
Manager

File Manager

File Maintenance
Management

File Operation
Interface

Waveform
Install/Delete

Waveform
Application Manager

Waveform Control
Manager

Device Login/Logout

Device Management
Control

Service Login/Logout

Component
Connection
Management

module

Configuration
Parser Module

Component
Deployment
Module

Command
Control

Management
Module

Debug
Information Log

Module

Message-
oriented

Middleware

Waveform
Development
Public Library

Fig. 5. STRS layered framework.

As can be seen from Fig. 4 and Fig. 5, STRS does not
include the Domain Configuration Manager, File System
Management and ORB encapsulation module. It is obvious that
STRS has much less requirements than SCA, so that STRS
owns a more lightweight core framework structure.

Fig. 6 and Fig. 7 presents the core framework interfaces of
SCA 4.1 and STRS respectively. STRS core framework is
written in C language and does not have the complex inheriting

relationship as SCA, but only has some common infrastructure
interfaces, which simplifies the realization of the core
framework.

Fig. 6. SCA 4.1 core framework interfaces.

Fig. 7. STRS core framework interfaces.

The purpose of this paper is to compare the efficiency of
SCA 4.1 and STRS. The comparison is carried out with respect
to full SCA 4.1, lightweight SCA 4.1 and STRS. Lightweight
SCA 4.1 is a profile with the lightest selection of interfaces,
modules, which is considered as a potential replacement of
STRS. Full SCA 4.1 is an realization with full CORBA Profile
transfer mechanism and we consider it as a benchmark in our
experiments [4][12].

Full SCA 4.1 still adopt the concept of agency, making
users easier to access services provided by the component in
the system. The agency mechanism is depicted in Fig. 8. The
Remote Method Invocation (RMI) system establishes three
abstract layers, which contain socket communication, the
serialization and deserialization of variables and results, etc.
The stub and skeleton combine to form the RMI frame protocol.
The remote reference layer is adopted to find the
communication object. The transport layer provides the
interconnection of client and server based on the TCP/IP
protocol.

ComponentIdentifier
(from CF)

<<Interface>>

AggregateDevice
(from CF)

<<Interface>>

AggregateDeviceAttributes
(from CF)

<<Interface>>

AdministratableInterface
(from CF)

<<Interface>>

CapacityManagement
(from CF)

<<Interface>>

ApplicationFactory
(from CF)

<<Interface>>

ApplicationManager
(from CF)

<<Interface>>

ComponentFactory
(from CF)

<<Interface>>

ComponentRegistry
(from CF)

<<Interface>>

ControllableInterface
(from CF)

<<Interface>>

DeploymentAttributes
(from CF)

<<Interface>>

DomainInstallation
(from CF)

<<Interface>>

File
(from CF)

<<Interface>>

PortAccessor
(from CF)

<<Interface>>

LifeCycle
(from CF)

<<Interface>>

PropertySet
(from CF)

<<Interface>>

TestableInterface
(from CF)

<<Interface>>

ExecutableInterface
(from CF)

<<Interface>>

LoadableInterface
(from CF)

<<Interface>>

EventChannelRegistry
(from CF)

<<Interface>>

ReleasableManager
(from CF)

<<Interface>>

FileSystem
(from CF)

<<Interface>>

FileManager
(from CF)

<<Interface>>

DomainManager
(from CF)

<<Interface>>

DeviceAttributes
(from CF)

<<Interface>>

FullComponentRegistry
(from CF)

<<Interface>>

+compositeDevice

+fileMgr

4

Stubs & Skeletons

Remote Reference Layer

Transport Layer

Stubs & Skeletons

Remote Reference LayerRMI
System

Client Server

RMI: Remote Method Invocation

Fig. 8. Agency mechanism.

On the contrary, lightweight SCA 4.1 and STRS do not
utilize the mechanism of agency, and launch all GPP
components in a process address space. In this way, we could
gain higher efficiency without the burden of serialization,
deserialization and various protocols, etc.

III. TESTBED INPLEMENTATION

The experiments are carried out on our own testbed, which
is shown in Fig. 9. The hardware ZLSDR-1000 is a high
performance general SDR platform, which is designed for
rapid prototype of waveforms. The main chip inside is ZYNQ
7030 which includes a dual-core of ARM Cortex-A9 (clock
speed 667MHz) and a FPGA of Kintex-7 (logic cells 125K,
DSP Slices 400). The DDR memory size is 1GB. This platform
contains the Linux 3.17 operating system, which is convenient
for users to develop applications in a Ubuntu system. All
experiments are carried out on this testbed.

Fig. 9. General SDR platform (ZLSDR-1000).

There are several aspects that may affect the performance,
e.g., packet size, total amount of packets and number of
components, etc. Four metrics are adopted to investigate the
performance between STRS, lightweight SCA 4.1 and full
SCA 4.1, namely, static memory occupation, inter-components
communication delay, waveform deployment delay and
waveform switching delay. The delay is captured by adding
timestamps at the input or output port of a component and the
inter-components communication delay is presented in Fig. 10.

Source
Component

Inter‐components

communication delay

Component processing time

T1 T2 TN

Middle
Component

Sink
Component

...

Fig. 10. Inter-components communication delay.

As shown in Fig. 10, the timestamp T1 is recorded before
the source component sends a packet and the timestamp T2 is
recorded after the middle component receives a packet. The
inter-components communication time of a single link (T) can
be computed as [T=(T2-T1)]. The experiments only record two
timestamps (T1 and TN). The timestamp TN is recorded after
the sink component receives the last packet. The difference of
TN and T1 (TN-T1) approximately represents the amount time
of all links in inter-components communication with the
component processing time has been curtailed extremely to
approach zero.

The waveform deployment delay and waveform switching
delay are displayed in Fig. 11. As can be seen from Fig. 11, the
waveform deployment delay is comprised of the delays of
uploading and initializing the waveform, and the waveform
switching delay includes of delays of waveform stop to
waveform launch.

Waveform Upload

Waveform Initialize

Waveform Launch

Waveform stop

Waveform unload

Waveform Upload

Waveform Initialize

Waveform Launch

Waveform
deployment delay

Waveform
switching delay

Fig. 11. Waveform deployment delay and waveform switching delay.

The efficiency of inter-components communication is a
critical element for evaluating a SDR system and is influenced

5

by several aspects, including packet size, total amount of
packets and number of components. The number of links of
inter-components, which also affects the delay, is not
considered as a metric as our test waveform is a cascaded flow
waveform with no processing codes in each middle
components [13].

IV. EXPERIMENT RESULTS AND ANALYSIS

To compare the performance between Lightweight SCA 4.1
and STRS, we carry out extensive experiment and discuss the
results in this section. The results of full SCA 4.1 are presented
as benchmarks. The experiment parameters are listed in Table I.

TABLE I. EXPERIMENT PARAMETERS

Parameter Value

Packet size (bytes) 128, 256, 512, 1024, 2048, 4096

Amount of packets (×106) 1, 2, …, 10

Number of components 3, 4, …, 11

In the experiment, continuous packets are pushed from the
source component to the sink component. The purpose is not
only to evaluate the delay performance but also to conduct
pressure test. The test is to evaluate the long-term performance
of the system with different core frameworks and transfer
mechanisms.

A. Experiment Results

Table II shows the static memory occupation of STRS,
lightweight SCA 4.1 and full SCA 4.1. As shown in Table II,
the memory occupation of STRS is much smaller than that of
lightweight SCA 4.1 and full SCA 4.1, which is more suitable
for memory limited radio systems.

TABLE II. STATIC MEMORY OCCUPATION COMPARISON

Implementation
Static memory occupation

(MB)

STRS 4.77

Lightweight SCA 4.1 27.82

Full SCA 4.1 77.20

Table III illustrates the communication delay of each link
between components in microsecond with different packet
sizes. The number of component is 11. As shown in the table,
the communication delay of STRS remains almost the same for
different packet sizes. The communication delay of lightweight
SCA increases with the packet size when it is small, and finally
tends to saturate when the package size raises to 2048 bytes.
The communication delay of full SCA 4.1 keeps increasing
with the packet size. The delay of STRS and lightweight SCA
is close, while that of full SCA 4.1 is over ten times larger than
the other two frameworks. It should be noted that, in the
experiment one packet is passed through 10 links from the
transmitter to the receiver since the component number equals
to 11.

TABLE III. INTER-COMPONENTS COMMUNICATION DELAY COMPARISON
WITH DIFFERENT PACKET SIZES

Package
size (bytes)

STRS (us)
Lightweight

SCA (us)
Full SCA 4.1

(us)

128 17.30 17.20 189.00

256 17.30 18.40 189.00

512 17.30 19.00 196.00

1024 17.30 20.80 200.00

2048 17.30 21.00 216.00

4096 17.50 21.00 240.00

Table IV presents the total time consumption with different
amount of packets. As shown in the table, that of STRS,
lightweight SCA and full SCA 4.1 all increase linearly with the
amount of data package in almost the same rate.

TABLE IV. TOTAL TIME COMSUPTION COMPARISON WITH DIFFERENT
AMOUNT OF PACKETS

Amount of
packets

STRS (s)
Lightweight
SCA 4.1 (s)

Full SCA 4.1
(s)

100,000 17.50 21.00 240.00

200,000 40.10 42.20 476.00

300,000 66.70 63.60 715.00

400,000 81.60 85.00 946.00

500,000 101.90 105.40 1190.00

600,000 119.20 125.40 1441.00

700,000 143.10 147.80 1669.00

800,000 164.90 162.20 1905.00

900,000 184.10 191.00 2142.00

1,000,000 201.70 207.40 2399.00

Table V shows the communication delay of each link

between components in microsecond. As shown in the table,
that of STRS, lightweight SCA and full SCA 4.1 increase with
the components number.

TABLE V. INTER-COMPONENTS COMMUNICATION TIME COMPARISON IN
THE COMPONENT NUMBER

Number of
components

STRS (us)
Lightweight
SCA 4.1 (us)

Full SCA 4.1
(us)

3 15.50 23.00 175.00

4 16.00 19.67 186.67

5 16.75 20.50 197.50

6 16.00 19.80 208.00

7 16.50 21.33 211.67

8 16.43 20.14 218.57

9 17.00 20.75 227.50

10 17.22 20.22 233.33

11 17.50 21.00 240.00

Table VI shows the waveform deployment delay of each
SDR architecture in millisecond. As shown in the table, the

6

deployment delay increases with the component number for all
of the three SDR architecture used in the experiment.

TABLE VI. WAVEFORM DEPLOYMENT DELAY COMPARISON IN THE
COMPONENT NUMBER

Number of
components

STRS (ms)
Lightweight SCA

4.1 (ms)
Full SCA 4.1

(ms)

3 12 46.7 843.3

4 13.3 51 1078

5 14.7 55 1318

6 16 58.7 1588

7 17.7 62 1841.8

8 18.7 65.3 2130

9 20 69.7 2385

10 20.5 73 2641.6

11 21 79.6 2903.7

Table VII shows the waveform switching delay of each
standard in millisecond. Through the observation, the
deployment delay increases with the increasing of the amount
of components for all of the three standards.

TABLE VII. WAVEFORM SWITCHING DELAY COMPARISON IN THE
COMPONENT NUMBER

Number of
components

STRS (ms)
Lightweight
SCA 4.1 (ms)

Full SCA 4.1
(ms)

3 13 51.6 880.6

4 14.6 56 1124

5 15.7 60 1376.3

6 17.7 64.4 1661.6

7 19.4 67.7 1930.4

8 20.4 71.3 2234

9 21.6 76.7 2502

10 22.2 79 2769.6

11 23 85.9 3035.1

B. Analysis

According to the experiment results, lightweight SCA 4.1
and STRS have very close transfer efficiency. Their transfer
delay is almost 1/10 of full SCA 4.1.

As shown in Fig. 12, each component in full SCA 4.1
creates a new process and keeps “alive” by circling the
accepting code inside. Components accept and send packet
once available from middleware, as shown in Fig. 11. While
Components in STRS and lightweight SCA 4.1 fetch and push
packets by transfer mechanism. The creation and
communication between processes devote to the lower
efficiency in full SCA 4.1.

Comp 1 Comp 2 Comp 10 Comp 11

Transfer Mechanism

Send

Accepting

Send Send

Packets
Generating AcceptingAccepting

Fig. 12. Circling mission of SCA component

Another difference for full SCA 4.1 is the adoption of
object request broker (ORB) mode, which brings more
manipulations such as serialization and deserialization, which
involuntary cause the decrease of efficiency.

The standards of STRS and SCA both have their
advantages and disadvantages. The merits of STRS are its high
efficiency and the fact that it can operate on the lightweight
platform which is resource-limited. In the earlier versions of
VxWorks, e.g., 5.4 and 5.5, that use the sharing address space
for all tasks, the efficiency of the inter-task communication is
quite high. STRS also has disadvantages in term of portability
and interoperability. The portability and interoperability of
STRS is lower than other SDR architectures, making it less
attractive in implementing ground-based communication
systems. Meanwhile, the implementation of STRS does not
provide the agency mechanism, placing more difficulty for the
application developer. The merits of the SCA are increasing
flexibility by adopting self-defined lightweight middleware and
reducing the expenditure with thread communication. The
drawbacks of the SCA are high waveform deployment delay,
high waveform switching delay and large static memory
occupation.

V. CONCLUSIONS

This paper evaluate the performance of three SDR
implementation, i.e., STRS, lightweight SCA and full SCA 4.1
with four typical metrics. The experiment results demonstrate
that the lightweight SCA 4.1 and STRS have similar
performance on inter-components transfer efficiency. The
experiment results also show that the efficiency of full SCA 4.1
CORBA is much lower than the other two SDR architectures in
all aspects. According to the experiment results, it is worth
considering adopting lightweight SCA 4.1 in the space
platform owing to its high efficiency. However, when use this
architecture, one should pay special attention to the waveform
deployment, switching delay and static memory occupation.
Possible future work include carrying out experiments in
platform with limited computing capability and memory size.
Besides, the experiments can also be extended to evaluate the
power consumption of different architectures, which is also a
challenge in space environment.

ACKNOWLEDGEMENT

This research was supported in part by the National Natural
Science Foundation of China (Grant No. 61601482).

7

REFERENCES
[1] Adrat M, Ascheid G. Special Issue on Recent Innovations in Wireless

Software-Defined Radio Systems[J]. signal processing systems, 2015,
78(3): 239-241.

[2] Cheng Y, Xu K, Hu Y F, et al. Technology demonstrator of a novel
software defined radio-based aeronautical communications system[J].
Iet Science Measurement & Technology, 2015, 8(6): 370-379.

[3] Baranda J, Henarejos P, Gavrincea C G. An SDR implementation of a
visible light communication system based on the IEEE 802.15.7
standard[C] International Conference on Telecommunications. IEEE,
2013:1-5.

[4] “Software Communications Architecture (SCA) Specification,” Joint
Tactical Networking Center (JTNC), Version 4.1, August 2015.

[5] Grahamcumming J. The GNU Make Book[J]. 2015.

[6] Gomez I, Marojevic V, Bracke J, et al. Performance and overhead
analysis of the ALOE middleware for SDR[J]. 2010, 49(1):1134-1139.

[7] Reinhart R C, Johnson S, Kacpura T J, et al. Open Architecture Standard
for NASA's Software-Defined Space Telecommunications Radio
Systems[J]. Proceedings the IEEE, 2007, 95(10): 1986-1993.

[8] Adrat M, Bernier S P, Buchin B, et al. A Technical Review of SCA
Based Software Defined Radios: Vision, Reality and Current Status[J].
Journal of Signal Processing Systems, 2016: 1-11.

[9] Reinhart R C, Johnson S K. NASA's SDR Standard: Space
Telecommunications Radio System[J]. 2007.

[10] Putthapipat P. Lightweight Middleware for Software Defined Radio
(SDR) Inter-Components Communication[J]. 2013.

[11] “Software Communications Architecture (SCA) Specification,” JTRS
Standards, Joint Program Executive Office (JPEO) Joint Tactical Radio
System (JTRS), Version 2.2.2, May 2006.

[12] “Space Telecommunications Radio System (STRS) Architecture
Standard, NASA-STD-4009”, NASA Technical Standard, June 2014.

[13] Putthapipat P, Andrian J, Liu C, et al. Studies on inter-component
communication latency based on variation number of components and
packet size in SDR-SCA waveform application[J]. International Journal
of Computational Science and Engineering, 2016, 12(1): 65-72.

